Case Study- Solving Vibration Issues in Vertical Pumps

Vertical pumps are especially susceptible to minor conditions that can result in elevated vibration amplitudes. The vertically suspended design and long stationary element lengths often combine into natural frequencies that are near forcing frequencies, such as running speed or even sub-synchronous faults. The complexity of these issues makes it difficult to diagnose and resolve persistent vibration issues with the type of data that is routinely available to the end users.

In-depth field testing paired with computational analysis provides a clear path to both an accurate diagnosis and a solution that has a high likelihood of success. The effectiveness of this methodology was proven for a Gulf Coast midstream company who was experiencing high vibration with their vertical freshwater pumps. By applying advanced field diagnostics, the end user was able to understand the underlying causes of the vibration and evaluate possible solutions in a theoretical environment prior to implementing them in the field.

Read the full case study, published in the May 2025 edition of Pumps & Systems magazine, here.

Read more case studies on vibration analysis and the work completed by Hydro Reliability Services here.

Podcast- Efficiency Starts with Reliability

Hydro’s Bob Jennings and Ken Babusiak joined Empowering Pumps’ Charli Matthews for an entertaining and informative podcast about pumps, steel, and the future of reliability-driven operations.

With decades of experience under their belts, Bob and Ken share how the tools, talent, and tech of the industry have evolved—and what that means for staying competitive in today’s fast-paced landscape. From strategies to retain young talent to the real value of learning and adaptation, this convo is loaded with wisdom.

You can listen to the podcast below or browse all of Empowering Pumps podcasts here.


You can also watch the taping of the podcast here:


Want to expand your knowledge? Explore Empowering Pumps and Equipment or read our case studies focused on Hydro’s work in the steel industry.

The Hidden Costs of Cheap Repairs 

Why Technical Expertise plays a Critical Role in Equipment Maintenance

As the industrial world becomes more competitive, reducing costs is key for maintaining an advantage in the marketplace. As such, many end users have become more cost-conscious when approaching equipment repair. In some services- where equipment is not complex and performance doesn’t affect process availability or quality- this strategy can provide some benefit. However, the short-term gain of a lower repair price often turns into long-term cost increases when a lack of engineering capability impacts equipment reliability and performance.

The importance of engaging with a facility that has strong engineering capabilities and subject matter expertise was proven during a series of boiler feed pump repairs for a Canadian biomass power plant. Like many biomass facilities, this plant had segmental ring boiler feed pumps, also commonly referred to as BB4 pumps. This is a complex design installed in a high energy, critical application, with numerous stacked and nested components that must be kept in alignment.

In this case, a small shop had completed several repairs that had resulted in high vibration and performance issues. These pumps were a legacy design that was no longer supported by the OEM and required engineering knowledge to properly refurbish and set the balance device. As such, it was important to find a repair partner that had a strong understanding of pump design. The plant worked with Hydro’s Scotford facility to bring these “bad actor” pumps back to optimal performance.

Read the full case study in World Pumps‘ March/April 2025 edition here.

Hydro Centaur Pipeline Deployment

Hydro’s Centaur recently deployed a new installation across a pipeline in the Midwest US, demonstrating the continuing growth of demand for smart condition monitoring solutions.

The pipeline end user chose Centaur over other options under consideration because Hydro has the subject matter expertise behind the equipment being monitored. This distinction allows Hydro to not only be a monitoring partner, but to be a partner in reliability across the equipment life cycle.

With Centaur’s real-time data, the end user is able to proactively service their equipment and identify incipient issues before they develop into greater problems. Through a collaboration between the pipeline team and Hydro Centaur’s dedicated monitoring engineers, any problems that are identified will receive a comprehensive root cause analysis and proposed modifications will be developed to prevent problem reoccurrence. These solutions can be implemented through Hydro’s extensive global service network and, if necessary, tested in a controlled environment in Hydro’s Performance Test Lab.

We are proud to support our customers with services and solutions that drive measurable results.

Reliability Enhancement for Circulating Water Pump

A large Midwestern coal-fired power plant had been experiencing vibration issues and premature failures with their large Kirloskar 130 BHM circulating water pumps. The plant has two operating units, with three circulating water pumps installed in each unit. The average life of the equipment was 6 months, which is far belong the industry standard for a large vertical turbine pump in this service. The pumps were sent to Hydro’s HydroAire 40th Street service center for a causal analysis and remediation of any problems that were found during the investigation.

 Upon disassembly, it became apparent that there were several critical issues that needed to be addressed to increase the reliability and mean-time-between-repairs for this equipment. The discharge head gussets were heavily eroded clear cracks and dislocation, which weakened the discharge head assembly and made is susceptible to high vibration.

The stuffing box was also eroded, which would make it difficult to successfully perform pump-to-motor alignment in the field upon reassembly at the site.

Another area that added to the high vibration was excessive bearing clearances. The guide bearings and shaft sleeves exhibited excessive wear, which would have reduced the stiffness and damping of the rotor assembly. Several factors were likely contributors to the bearing wear.

Fit-ups of the stationary assembly were excessive with average fit-ups measuring in the range of 0.010 – 0.030”; for reference, Hydro’s typical acceptance criteria are 0.001 – 0.003”. Critical faces and bores were also found out of acceptable tolerance, with concentricity, parallelism, and perpendicularity measuring in the range of 0.005 – 0.015”, where acceptance is usually held less than 0.002”. Not only did the out of tolerance fits contribute to overall misalignment, they provided a leak path that resulted in erosion of the column pipes at the fit areas.

 

Excessive wear was also found on the impeller vanes and the impeller liner surface, indicating contact between these two components. This contact was likely caused by both the overly loose impeller fit and non-concentricity of the rotor and stator, as mentioned above. The impeller vane wear would have increased rotor imbalance, further increasing vibration. The opening of this clearance would have also reduced the pump efficiency, causing it to lose performance and require more energy to operate.

In addition to the factors that likely caused misalignment and contact between the stator and rotor was that the fluid being pumped had a high sand content, which made it an especially harsh environment for the bearings and sleeves. The shaft sleeves were found to be a hardness of only 32Rc, which was insufficiently hard to resist wear. The shafts themselves also exhibited wear at the sleeve location, which increased the overall cost of maintenance for this equipment. The guide bearings were self-lubricating soft bearings made from a composite material and did not have any fluting to allow particulate in the fluid to pass more easily through the tight clearance without wear and were deemed inappropriate for this application.

Modifications were designed to provide structural reinforcement to the discharge head and to eliminate the factors causing premature wear of the bearings and shaft sleeves. The eroded gussets were removed and replaced with thicker, more robust gusset to enhance the structural integrity of the components. The new gussets and lifting lugs were fabricated from carbon steel and installed using precision welding. A PT inspection was completed to ensure weld integrity. The eroded stuffing box was also repaired using weld restoration techniques.

To improve the alignment of all components within the stationary assembly, any out of tolerance fits and bores were welded up and machined to best-in-class tolerances and fits.

Vertical pumps are especially susceptible to misalignment since they have a large number of stacked components. Large fit-ups between each component can easily stack-up to a large offset at the bottom of the assembly that exceeds the bearing clearance. By restoring recommended fits and tolerances, non-centerline compatibility between the stationary and rotating elements would be greatly decreased.

The impeller was laser scanned to create a solid model of the component that could be used to establish the correct vane profile of the component before it had been worn. This model was used to create the vane profile machining drawing that was used during impeller refurbishment. The solid model was also used post-machining to confirm that the machined component conformed to the expected dimensions during as-built inspection. The impeller bore was also corrected to provide the appropriate fit-up to the shaft.

To add additional wear resistance, the shaft sleeves were upgraded to 410 stainless steel and provided with direct laser deposition (DLD) cladding on the running surface to enhance durability and wear resistance. The shafts were chrome plated at the fit locations to extend their service life as well. The bearings were upgraded to a cutlass rubber design that included axial grooving to improve longevity and overall pump performance.

The impact of these enhancements was clear upon reinstallation of the pump at the power plant. The modifications significantly improved the pump’s structural integrity, alignment precision, and wear resistance. By implementing these targeted upgrades and providing a quality repair, Hydro was able to ensure that the end user would achieve reliable performance in demanding operating conditions. The reinstalled pumps have now been operating for more than 3 years, which is already 6 times the life they had previously been experiencing. The high vibration was eliminated and vibration is now measuring below any alert or alarm levels.

Interested in learning more about our HydroAire 40th Street facility? Meet them here.

You can also explore our experience with large vertical pumps here.