Build your skills: View Hydro’s upcoming pump training seminars

Interested in pump training? Hydro’s got you covered. Providing aftermarket-focused training is an important part of our commitment to our customers. We offer training on a range of topics from pump fundamentals to more specialized hands-on programs for high pressure multistage pumps.

Hydro’s training helps you do what you do – better. Visit our training page to view our upcoming seminars!

Pump Training Seminars | Hydro, Inc. from Hydro, Inc. on Vimeo.

Quality Nuclear Performance Testing in Urgent Conditions

A 5-day emergency testing turnaround for a nuclear pump proved no problem for this world-class testing facility.

Written by: Nick Dagres & Faisal Salman
Published by: Nuclear Plant Journal

When a vertical safety-related residual heat-removal pump failed its required surveillance performance test at a nuclear power plant, it created the need for emergency hydraulic performance and vibration testing. The plant required the pump back in operation within one week, to prevent shutdowns that could cost the facility up to $1 million per day.

The plant contacted Chicago based Hydro, Inc., which has Hydraulic Institute (HI) Pump Test Lab Approval (PTLA) – certified testing facilities and the ability to perform crucial testing on an urgent basis.

Background
During a routine check by the regulator, a safety-related heat removal pump failed its required in-house surveillance pump performance test. With a safe shutdown of the unit, the plant entered an LCO (Limited Conditions of Operation) period. The power station shut down the unit but wanted to avoid a full shutdown of the facility. This created an emergency situation for the plant.

According to the regulator’s strict standards, if performance requirements are not fulfilled immediately, the plant can be shut down completely. The LCO allows the plant to continue to operate as long as the problem is being resolved in a limited time frame. In this case, the time frame was seven days. To allow for shipping to and from the facility, Hydro had only five of those days to complete the project. The plant was concerned that the repair time might exceed the LCO. Other similar pumps remained in operation performing the same function, however the unit was shut down because there were no spare pump store place it while testing was being
performed. The original equipment manufacturer could not schedule the required tests in the abbreviated time span; therefore the Chicago service company was commissioned. Under normal conditions the scope of work would generally take about six to eight weeks to complete.

Pump as received

Pump as received

Identifying the Problem
In such cases, the regulator requires that a third party inspect the equipment to discover whether the issues were with the instrumentation or with the pump itself. As a result, immediate testing was required to determine whether the pump was functional.

Continue reading

Hydro’s Test Lab is the first to be certified by the Hydraulic Institute (HI) Pump Test Lab Approval Program

screen-shot-2016-09-23-at-4-49-50-pmWe are very pleased to announce that Hydro’s Test Lab is the first test lab to be certified by the Hydraulic Institute in their new pump test approval program.

The Hydraulic Institute which will celebrate 100 years of industry leadership in 2016 is a prestigious organization which develops and delivers comprehensive industry standards and educational programs.

Special thanks to Hydro’s Jeff Johnson, General Manager of the Test Lab and Ares Panagoulias Test Lab Engineer whose dedicated efforts in working with the accreditation team were critical to the approval of our test lab.

Learn more via Pumps & Systems

Setting the New Pump Testing Standard

The pump industry faces a challenge in keeping up with changing efficiency regulations. Programs such as the Hydraulic Institute (HI) Pump Test Lab Approval (PTLA) are helping companies adhere to these standards. Here, we see how Hydro, Inc. made history with the first HI PTLA certification.

Written by: Michelle Segrest
Publisher: World Pumps / June 2016

 

With an engineering first approach, Chicago’s Hydro, Inc., proves the impact of redesigned and engineered pumps by testing their real-time hydraulic and mechanical performance at its state-of-the-art Test Lab. It is in the 46,000-square-foot- facility that Hydro develops and implements engineering modifications for improving the performance of critical pumps and then verifies that performance in the lab.

Thanks to high-quality capabilities in testing vertical, horizontal, and submersible pumps, Hydro made history in September 2015 by becoming the first recipient of full certification of the new Hydraulic Institute Pump Test Lab Approval program.

This new industry standard is designed to assist pump OEMs and other pump test laboratories to improve their current laboratory procedures and policies by working with a third-party auditor to develop and maintain accurate, uniform and repeatable pump testing protocols. The program also helps participating organizations adhere to the requirements of the international test laboratory accreditation standard (ISO 17025) concerning test measurement equipment.

“Hydro’s test lab is unique because it was designed to support the aftermarket by having the flexibility to test a wide range and variety of custom engineered pumps,” said George Harris, Hydro CEO and Founder. “Since it is not incorporated in a plant which manufactures new pump production, as is the case with many large OEMs, it is possible to test a customer’s pump in 1-to-3 weeks lead time. This is very important because customers who need a certified test, need the pump tested quickly.”

Since it opened in 2010, Hydro’s 5,000-Horsepower Test Lab has helped to troubleshoot problems with pumps in the field by isolating the pump from its system in a controlled environment to simulate field conditions in a safe manner.

“Hydro remains independent of the constraints that can be imposed by relying on existing hydraulic designs and manufacturers’ predicted performance curves,” said Jeff Johnson, Vice President, Hydro, Inc., a 41-year industry veteran who was instrumental in the design and construction of Hydro’s Test Lab. “All of these efforts ultimately lead to a more reliable and well understood pump performance.”

fig-258

Single-stage horizontal split case (BB1) pump test with customer motor – test loop.

Continue reading

Optimize High-Energy Pumps With Improved Impeller Design

As new design and manufacturing technologies are developed, end users can affordably upgrade their systems and verify better performance.

Written by: Bob Jennings & Dr. Gary Dyson (Hydro, Inc.)
Publisher: Pumps & Systems / August 2015

 

The rising cost of electrical power has caused many industrial plants to shift their focus to energy consumption. Plants often run pumping equipment continuously, and much research has pointed to opportunities for cost savings by optimizing pumping equipment.

When evaluating the potential for energy savings, end users cannot consider a pump in isolation. The suitability of the pump for the system within which it operates is vital. Even the best designed and most efficient equipment offers power-saving potential if it is run off its best efficiency point (BEP) in a system for which it is ill-applied.

test_orig

Image 1. Much research has pointed to opportunities for cost savings by optimizing pumping equipment. (Images and graphics courtesy of Hydro, Inc.)

Many plants have been in operation for more than 40 years, and their operating philosophies have changed over time. Plant improvements have enabled higher throughput, often increasing production by as much as 125-150 percent. Unfortunately, little is done to improve or increase the performance of the support-service pumping equipment, such as cooling water pumps.

As system flow demands increase, the duty point of the pumps is forced to shift far to the right of the BEP, well outside the acceptable operating range (AOR). This causes efficiency and pump reliability to decrease dramatically.

Casting tolerances, surface finishes, and impeller/volute or impeller/diffuser geometry have all dramatically improved during the last 40 years. But because many pumps were installed when the plants were commissioned, the existing pumps were manufactured using techniques that would be considered obsolete today. The result is higher energy costs and reduced reliability and availability, which often cause production delays. Continue reading